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Summary. Density functional calculations of ground and excited states of Lin 
(n ~< 8) dusters have been performed, within two different approaches. Using a set 
of Kohn-Sham orbitals to construct wave functions, the calculation of the oscil- 
lator strengths of the electric dipole transitions is performed. Our results have been 
tested at two levels: first the necessary comparison with the experimental data, 
second the comparison with high level CI (MRD-CI) calculations. This last point is 
not a trivial challenge, because such an ab initio method leads for small clusters to 
a highly accurate description of the electronic structure and optical absorption 
spectra. Finally, this is also a new test for the capability of using Kohn-Sham 
orbitals to construct physically meaningful wave functions. 

Transition energies, oscillator strengths and finally optical absorption spectra 
presented here are in general in reasonable agreement with the experimental data 
and the MRD-CI calculations. That is very promising for bigger systems, with 
regard to the modest computational effort (CPU time and memory size) of density 
functional calculations. 

Key words: Density functional theory - Oscillator strengths - Optical absorption 
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1 Introduction 

Theoretical investigations of the electronic features of the ground state (GS) and 
the excited states of molecules or clusters play a key role for the interpretation of 
the experimental data such as ionization potentials or optical spectra. For example, 
structural information about small alkali metal clusters (Lin, n ~< 8) have recently 
been carried out, in part from the comparison between ab initio calculations with 
post-Hartree-Fock configuration interaction (CI) and optical absorption spectra 
I-1-4-1. However, it is well known that such high level CI or Moller-Plesset 
calculations are quite expensive in computational resources, since they scale 
(at least) as n 5, n being the number of electrons. This precludes the use of such 
a method for significantly larger systems. 

On the other hand, density functional theory (DFT) has proved to be able to 
provide valuable results about structural and energetic properties of molecules, 
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clusters, or molecules adsorbed on surfaces using a set of Kohn-Sham (KS) orbitals 
(for an extensive review of the capabilities of the method, see Ziegler [5]). Recently, 
several works [6] have proved that Slater determinants of KS orbitals are 
physically meaningful wave functions of the ground state of a system with a given 
electron density. Using the extension of the Hohenberg and Kohn theorem [7] to 
excited states (see further), the wave functions of some excited states are obtained 
similarly. From this starting point, the electric dipole transition moments can be 
computed and, finally, the oscillator strengths of the transitions and the theoretical 
absorption spectra are estimated. 

In this paper, the accuracy and predicting power of DFT to obtain oscillator 
strengths and to model absorption spectra are investigated. First the calculations 
of the transition energies and the computation of the transition moments are called. 
Then, applications to the absorption spectra of some Li, clusters (n ~< 8) are given. 
Li, clusters are good candidates to test DFT because for such systems both recent 
theoretical and experimental results are available and, moreover, computing time is 
reasonable. 

Our structural or energetic results have been carried out using the ADF [8] 
or the deMon [9] code, with local or gradient-corrected potentials. The transition 
moments proceed from a special routine added to the deMon code. 

2 Transition energies 

2.1 Multiplet approach 

The Hohenberg and Kohn theorem assumes that all the properties of the GS of 
a physical system (in particular its energy) can be determinated from its electron 
density° The Gunnarson-Lunqvist extension to excited states [10] provides a way 
to obtain the excitation energies. This way has been earlier developed by Ziegler 
et al. [11] and Von Barth [12] and their calculations afford results in reasonable 
agreement with experiments. More recently it has been extended to any irreducible 
representation by Daul [ 1 3J. Thus it is possible to describe the multiplet splitting at 
least to first order. In particular, Daul et al. [14] have recently given some results 
for the ruthenocene molecule in excellent agreement with the properties derived 
from the optical spectroscopy. This method based on vector coupling gives for any 
symmetry point group the relation between the multiplet splitting and the single- 
determinant energies of a molecule or cluster, including the case of degenerate 
orbitals. The corresponding computer programs have been also developed by 
Daul. Following this technique, the multiplet wave function: 

711 = ]aFmrSms), 

arising from a given configuration a, is obtained by vector coupling as a linear 
combination of single determinants: 

where F is the label of the irreducible representation of the space part of the wave 
function; mr refers to its component in case of degeneracy; S is the spin part of the 
wave function with component ms in case of spin multiplicity larger than 1, #~ is 
a single Slater determinant and Ai~ is a matrix of symmetry coefficients which is 
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given by a first program. Then, the second and third programs give the single 
determinant energies E(q~) in terms of the r non-redundant single determinants ~:  

j = r  

E(q~,) = ~ C~jE(¢j) 
1=1 

and finally the multiplet energies: 
j=r  

E(~,) = ~ FoE(¢j). (2) 
j = l  

It should be noticed that Eq. (2) gives the energy to first order, since only Coulomb 
and exchange integrals (first-order electrostatic interaction) contribute to the 
single-determinant ~.  

2.2 Fritsche approach 

From a totally different point of view, Fritsche [15] developed recently the 
generalized DFT, which affords for the solids the energies of any eigenstate of 
N interacting electrons from the density of the GS only. Assuming that the 
extension to clusters is legitimate, the excitation energy would be given by 

with 

and 

AE = ey - 8i + AS~, (3) 

Ay, = -- f Ap~,(r) [ V~ (r) - 2e~ (r) dr 

zlp}~(r) = I ~ s ( r ) l  2 _ I ~ ( r ) l  2, 

where e is a KS eigenvalue, the subscripts i and f refer to the two KS orbitals 
~b involved in the one electron transition, the superscript i refers to the ground state, 
e~,o(r) and V~¢ (r) are, respectively, the exchange-correlation energy per particle and 
the exchange-correlation potential. Note that Eq. (3) is obtained assuming that the 
excited state is a single determinant) 

1 On the basis of different hypotheses, Malkin et al. [26] proposed recently a similar, but different, form 
for the transition energy, namely: 

with 

and 

A E  = ~, - ~, + A f i ,  

- r pAr)P~(r) EV~o(r) - 4o(r)] dr 
~ '  - - J - - T - -  

par )  = F~Ar)I2, 

pT _- y~ i~(r)12o 
J 
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2.3 Calculations 

To perform our calculations, the geometries of the Li, dusters have been first 
optimized at the local density approximation level (LSD) and, for Li3 and Li4, 
further optimized at the non-local (i.e. gradient-corrected) level of approximation 
(in this last case we used the correlation functional of Perdew [16] and the 
exchange functional of Becke [17]). The equilibrium geometries are found very 
close to those found by post-Hartree-Fock calculations [1-4]. They are labelled 
with the symmetry group symbols. The details on the structure calculations will be 
published elsewhere [18]. 

Our results have been obtained within the two approaches in the energy range 
from 1 to 4 eV. For the multiplet calculations, we have taken into account all the 
configurations corresponding to singlet and triplet LSD states for the even values 
of n, and to doublet and quadruplet LSD states for the odd ones. 

3 Oscillator strengths 

3.1 Method 

For an atomic system, assuming an L-S coupling and neglecting the spin-orbit 
interaction, the length form of the multiplet oscillator strength f is given by the 
expression [19]: 

2 E ' - E  ÷L +S -~." ÷s' 
Z Z Z Z ] (~P]R[ ~ ' ) ]  2, 

f =  3 (2S + 1)(2L + 1) ML~ -L Ms= -S ML,~ --L' Ms,= --S' 

where ] ~ )  and ] ~ ' )  are the normalized initial and final states involved in the 
electric dipole transition with the energies E and E' (resp.), 

L and L' are the angular moments (resp.), S and S' the spins (resp.), 
(2S + 1)(2L + 1) is the degeneracy of the initial state, R is the position operator: 

R =  ~ r i ,  
i = 1  

n being the number of electrons. 
A similar expression can be written for molecules or aggregates: 

2 E ' - E  ~mr~., +s (mr'),., +S' 
E E ~', E [(elRl~'>l 2, 

f =  "3 (2S + 1)(mr)m.x m~=o us= -smr,=o u~.= -s' 

where [~v)= I~FmrSms)  and I ~ ' ) =  I~'F'mr,S'ms,) are the initial and final 
states. In the present work, ] ~') refers to the ground state of the system and [ ~ ' )  to 
a one-electron excitation (a doubly or more excited configuration, which is gener- 
ally associated with small oscillator strengths describes fine effects and is beyond 
the scope of this work). 

Following the procedure of Daul, the transition moment 

M =  (WIRIW')  

can be written as 

#v 
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where (4~ [ R I 4'~) are matrix elements of the R operator between the two determi- 
nants 4 ,  and 4'~ which are, respectively, connected to the ground state and the 
excited state by Eq. (1). Thus, to obtain M it is necessary to compute all the 
(41R 14') (the index of the Slater determinants has been omitted because there is 
no more ambiguity) where 

4 = (n ! ) -1 /2  ~ ( _ 1 ) j p / ( ¢ j , ( 1 ) ¢ j ~ ( 2 )  . . .  Cj . (n) )  
J 

and 

4' = (n!)- t/2 ~ ( _ 1)kpk(¢~(1)~b~(2) ... ¢~.(n)), 
k 

{¢~}~= 1., and {¢[}t= 1., are the Kohn-Sham spin orbitals, building blocks of T and 
~e' respectively. 

In the expression of 4 (or 4'), thejth (or kth) term of the sum is simply obtained 
by applying the permutation operator Pj (or Pk) to the KS spin orbitals and 
multiplying by - 1 or + 1, according to the parity of the P1 (or Pk) operator, 

Let us recall here that Eq. (3) has been derived by Fritsche assuming that the 
excited state )~ is described by a single determinant X. Following this approach, the 
oscillator strength of the transition 4 --* Z is simply given by 

where the transition moment is 

f r  = {  AEIM~[ 2 

MF = <4IRIS> 

(4 being a GS determinant) which is mathematically analogous to (OIRI 4 ' )  and 
will be computed similarly. 

Introducing the expressions for 4 and 4', ( 4  [ R 1 4 ' )  can be expressed as 

(41RI4 ' )  = ~  ( -  1 ) J P i ~ ( - - l ) k p k ( ¢ j . ( 1 ) . . . ¢ / , ( n ) l  ri(i)lCk,(1) . . . ¢k . ( ) )  
• ' k i=1 

It is well known that such an expression can be dramatically simplified [20]: 

( 4 1 R 1 4 ' )  = ~ ~ ( -1 ) ' e , ( ¢ , , ( 1 ) . . . ¢ , . ( n ) l r , ( i ) l ¢ [ (1 ) . . . ¢ ' ( n ) ) ,  (4) 
i = l  r 

where P, runs only over the n! permutations in the {¢i}i= 1,. (and no more in the 
{¢;},=1.,). 

Moreover, 
break up into 

since r~(i) is a one-electron operator, all the terms of the sum in (4) 
a product: 

P,(¢,,(1)¢,2(2) ... ¢~.(n)lri(i)l(¢'l(l)¢~(2) ... ¢~(n)) 

= (¢,,(1)[¢~(1)) .-. (¢, , ( i)[r ,( i) l¢[(i))  ... (¢,.(n)]¢'(n)).  (5) 

It should be noticed that (~b,,(p)lC~(p)) and (¢, ,(q)lr(q)l¢'q(q))  do not 
depend on the p or q index of the electrons, and that in general 

(t#jl¢/> -# ~jv 

The rigorous calculation of M needs the computation of the n! permutations 
P, of the {¢i}~=1., in Eq. (4) and our algorithm takes into account all these 
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permutations, but of course, all these terms are not computed usque ad finem: 
in fact, (St, IriS1) excepted, all the factors of the right-hand side in Eq. (5) are 
smaller or equal to unity. Using the Schwartz inequality, it can be shown easily: 

where (~bjl Sj) and (qS;l~b[) are equal to unity. (Moreover, although ($~1 ~b;) is 
not equal to 6j~, its numerical value is in practice, in most cases, very close to zero 
or unity, except for a small number of factors.) Thus, as soon as the product of 
($,, I r I ~b[ ) by the p first factors ( ~b,. I $ ' )  in Eq. (5) becomes smaller than a given 
criterion (typically from 10-4 to 10-6), the program stops and the corresponding 
term in Eq. (4) is dropped. The numerical stability of M for several criteria with 
different orders of magnitude assumes that the dropped terms in Eq. (4) are 
negligible (Table 1 shows the example of the 1.73 eV-B2 transition in Li6(C2v)). 

3.2 Normalized oscillator strengths 

As can be seen from the definition, the oscillator strength consists of two important 
factors: the transition energy AE and the transition moment M. Of course, an 
inaccurate value of dE induces an error in the oscillator strength. Then, to permit 
an objective estimation of the quality of oscillator strengths with the "multiplet 
approach", the transition energies are taken from our "multiplet" calculations, 
except in the case of disagreement with the experimental values. In these last cases, 
the energy values derived from the Fritsche method have been used. Obviously, this 
is only a way to compare our DFT oscillator strengths with those of the MRD-CI 
calculations. Such a "correction" cannot be made a priori without experimental 
or other computed data and each spectrum given in the last part of the section 
proceeds from only one approach. 

It is well known that the oscillator strengths are very sensitive to the quality of 
the wave functions of the states involved in the transition [21]. Recently, ab initio 
calculations of Bauschlicher et al. [22] showed that basis sets, correlation treat- 
ment, geometrical parameters, length or velocity form, can induce important 
variations of the oscillator strength, without any change of the total energy 
(It should be noticed that in this last paper [22], the length form is shown as the 
more stable). More precisely, Fuchs et al. [23-1, in their work on Na6 show that 
direct comparison between the oscillator strengths derived from different approx- 
imations are not relevant. For example, in their large-scale multiconfigurational 

Table 1. Transition moment calculations for 1.73 eV-B2 
transition of Li6(C2.) 

Criterion Transition moment 

10 -1 1.7 
10 -2 1.92 

10 -a 1.971 
10 -4 1.9825 
10 - s 1.98444 
10 -6 1.984762 
10 -7 1.9848000 
10 - s  1.98480052 
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linear response calculations, the absolute values of the oscillator strengths depend 
strongly on the size of the active space: great variations of the oscillator strength 
corresponds to a transition of a given irreducible representation may be counter 
balanced by another one in the same energy range, so that the theoretical spectrum 
does not show any significant change and is even in satisfactory agreement with the 
experimental spectrum. Therefore it is not surprising to obtain DFT absolute 
oscillator strengths which are larger than MRD-CI values. This may be related to 
factors like basis sets as well as the selected theoretical method, or the equilibrium 
geometry. Accordingly in Tables 4-7 we have used "normalized oscillator 
strengths" 

j~ - .f" 

-EL' 
with eventually the global value for a narrow energy range in case of quasi- 
degeneracy. 

4 Results and discussion 

4.1 Transition energies 

The excitation energies obtained for the rhombus Li4(D2h), the tripyramid 
Li6(C2v), the tetracapped tetrahedron Lia(Td) clusters within the two different 
approaches are gathered in Table 2 for the largest intensity transitions (resonance) 
with MRD-CI oscillator strengths in the range of 1, and in Table 3 for those with 
oscillator strengths in the range of 0.1. For the sake of complete comparison, 
the experimental and MRD-CI data have been reported° In this Table 3 have 
been added two transition energies for the triangle Lia(C2v) and one value from 
a coupled electron pair approximation calculation [24]. To our knowledge, sur- 
prisingly, no other ab initio oscillator strengths are available. Therefore, for this 
cluster, only a comparison between experimental [25, 1, 4] and computed absorp- 
tion spectra will be reliable. For the clusters larger than Li4 the geometries used 
were those optimised at the LSD level whereas the non-local level was retained for 
Li3 and Li4, as stated previously. 

One can see in Tables 2 and 3 that the energetic positions of the multiplets 
are in agreement with the experimental or CI values, except for the first intense 
transition in Li4 (D2h) and Li 6 (Cav). These transitions involve for Li4 (D2h) [1] 
some states for which the description of the electron correlation requires, in the CI 
method, at least two determinants of different configurations with coefficients of 
the same order of magnitude. The DFT computes several determinants related to 
only one configuration and leads in this case to a crude description. For such 
a transition a more sophisticated gradient-corrected functional is needed. In the 
case of Li6(C3v), as pointed out by Daul, the discrepancy may be related to the 
formula (2), which is only a first-order expression for the energy. It would be 
interesting to compute the off-diagonal terms (second-order electrostatic contri- 
butions) to check the effect of this approximation on this transition. 

It is worthwhile to note that the Fritsche scheme works well with the transitions 
of large intensity. We can see in Table 2 (large intensity transitions) that in all cases 
the transition energy computed within the Fritsche scheme looks in reasonable 
agreement with the CI values: the rms deviation is about 8%. However, this 
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conclusion does not hold for small intensity transitions, as can be seen in Table 3: 
rms deviation between the Fritsche and MRD-CI values: 34%, between the 
Fritsche and multiplet values: 33%. 

4.2 Intensities 

The "DFT-multiplets" normalized oscillator strengths for Li4(D2h),  Li6(C2v ) and 
Li6(Cav) are gathered in Tables 4-6 with those of Ref. I1, 2-]. Most of them 
compare well with the high-level CI calculations. Onl~ the two lowest energy 
transitions in Li6(C2v) are  in total disagreement: fn = 0.096 and 0.129 in 
our calculation compared to 0.037 and 0.017 (this point is still the subject of 
further study). These values excepted, the rms deviation is about 16% with 
a maximum equal to 29%: 0.012 (this work) and 0.017 (MRD-CI) for a weak 
transition in Li6(Ca~ ). Obviously, the MRD-CI transitions involving mainly 
a doubly excited configuration have no equivalent components in this work~ 
which considers only the one-electron excitations. On the other hand, "DFT- 
Fritsche" oscillator strengths are in reasonable agreement with MRD-CI results 
only for transitions corresponding to largest MRD-CI oscillator strengths, as 
illustrated in Table 7: the rms deviation between Fritsche and MRD-CI is about 
20%° More precisely, since no splitting into states is performed with the Fritsche 
scheme, only the sum of the DFT transitions lying within a narrow interval has to 
be compared to the sum of the corresponding states involved in the MRD-CI 
approach. 

4.3 Comparison of spectra 

The computed absorption spectra in the visible range, obtained by convolution 
with a gaussian, are given in Figs. 1-4. For each cluster (Li3(C2v), Li4(D2h), 

Table 7. Comparison of normalized oscillator strengths obtained with Fritsche approach and MRD-CI 
values (Ref. [1,2]). This table has been limited to energy ranges corresponding to "MRD-CI summation 
oscillator strength" great in the range of 1 

Cluster DFT-Fritsche DFT-Fritsche MRD-CI MRD-CI MRD-CI 
transition summation of transition summation summation 
energy normalized energy of oscillator of normalized 
range oscillator range strengths oscillator 

strengths strengths 

Li4 (D2h) 
Li4 (D2h) 

Li~ (C2,,) 

Li6 (C3v) 
Li6 (C3v) 

LiB (Td) 

1.9 0.342 1.78 0.7926 0.370 
3.3-3.5 0.319 3.01 0.5698 0.266 

2.3-2.6 0.607 2.37-2.62 2.052 0.757 

1.9-2.1 0.602 2.15-2.19 1.83 0.592 
3.2-3.4 0.273 3.08-3.15 0.6 0.195 

2.2-2.5 0.780 2.41-2.63 3.801 0.738 
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Fig. la, b. Comparison between: (a) 
DFT computed spectrum with 
"multiplets" approach for the more 
stable geometry of Li3; (b) 
experimental spectrum from Ref. [4] 

Li6(C2v)~ Lis(Td)), they proceed from our most stable geometries, very close 
to those of Ref. [1, 3], which have been proved to be the experimental ones. Two 
of the spectra have been obtained through the "multiplet" approach, which can 
be regarded as the best one (at least the more exact) due to its theoretical 
background, the two others within the approach of Fritsche. Analysis of spectra 
has been performed making use of the symmetry of transitions for comparison to 
CI results. Despite the following remarks, a reasonable agreement with the experi- 
mental data is found, as observed in Figs. 1-4: 

- The Li3(ezv) spectrum (Fig. 1) describes well the experimental onerofRef. [4] but 
it should be noticed that the spectrum in Ref. [I]  exhibits peaks lying at the same 
energy with different relative intensities. 
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Fig. 3a, b. Comparison between: (a) DFT computed spectrum with "multiplets" approach for the stable 
geometry of Li6; (b) experimental spectrum from Ref. I'2] 

- I n  Li4(D2h), as already said, some multiplets lie at too low energy (therefore 
leading to too small oscillator strengths) and only the peaks near 2.8-2.9 eV are 
correctly reproduced (Fig. 2a). The Fritsche approach (Fig. 2b) allows a coarse 
assignment of the main experimental transitions, but cannot reproduce the fine 
structure, at least because the four main peaks are shifted towards high energies. 
-Figure 3 shows the Li6(C2v) spectrum in accord with the experimental one. 
However, the oscillator strengths at low energy disagree with the CI values. 
Unfortunately, this energy range has not been investigated experimentally in 
Ref. [2!. 
- In Fig. 4 is drawn the theoretical absorption spectrum of Li 8 (Zd). For this cluster, 
the Fritsche approach gives, for a moderate computational effort (with respect to 
the multiplet calculation and of course the CI one), a reasonable description of the 
broad-band spectrum. In Td symmetry, a multiplet calculation should improve the 
accuracy of the spectrum, but because of the threefold degeneracy of some irreps, 
the calculation is more complicated than for cases like C2v, and such a work is still 
in progress° 
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5 Conclusion 

The predictive power of DFT to give structural and spectroscopic assignments and 
interpret absorption spectra has been investigated through the example of small 
lithium clusters, within two different approaches, one of them bearing on the 
determination of the multiplet structure. Kohn-Sham orbitals are used to build 
wave functions of the ground state and excited states to compute the oscillator 
strengths of electric dipole transitions. It is shown that they are not directly 
comparable with MRD-CI results: only relative oscillator strengths can be com- 
pared in terms of"normalized oscillator strengths" in a narrow energy band. Then, 
DFT values with the multiplet method and in a smaller extent the Fritsche method 
are generally in reasonable agreement with MRD-CI results and experimental data. 

On the other hand, from the comparison of transition energies given by the two 
DFT approaches and MRD-CI or experimental values, the following conclusions 
can be drawn: 

(i) the multiplet method is capable of reproducing realistic energies and therefore, 
associated with oscillator strength calculations, it represents a suitable tool for the 
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prediction of absorption spectra. However, in a few cases (Li4(D2h) and Li6(C3v)), 
a transition energy with a large oscillator strength may be found to be unsatis- 
factory, leading to a poor description of a part of the spectra. The neglect of 
the second-order electrostatic contributions to the multiplet energies or a weakness 
in the description of the correlation may explain such features. 
(ii) The Fritsche scheme yields correct results only for the largest oscillator 
strengths and then leads to only a qualitative description of the absorption spectra. 
Nevertheless, energetic results show that formula (3), which has been demonstrated 
for solids and ignores the multiplet splitting, can give interesting preliminary 
information with a minimum computational effort, for a cluster. 
(iii) Finally~ this work shows that wave functions constructed from a set of 
Kohn-Sham orbitals can be reliable quantities for calculations of electronic 
properties, such as oscillator strengths. 
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