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Summary. Density functional calculations of ground and excited states of Li,
(n < 8) clusters have been performed, within two different approaches. Using a set
of Kohn-Sham orbitals to construct wave functions, the calculation of the oscil-
lator strengths of the electric dipole transitions is performed. Our results have been
tested at two levels: first the necessary comparison with the experimental data,
second the comparison with high level CI (MRD-CI) calculations. This last point is
not a trivial challenge, because such an ab initio method leads for small clusters to
a highly accurate description of the electronic structure and optical absorption
spectra. Finally, this is also a new test for the capability of using Kohn—-Sham
orbitals to construct physically meaningful wave functions.

Transition energies, oscillator strengths and finally optical absorption spectra
presented here are in general in reasonable agreement with the experimental data
and the MRD-CI calculations. That is very promising for bigger systems, with
regard to the modest computational effort (CPU time and memory size) of density
functional calculations.

Key words: Density functional theory — Oscillator strengths — Optical absorption
spectra

1 Introduction

Theoretical investigations of the electronic features of the ground state (GS) and
the excited states of molecules or clusters play a key role for the interpretation of
the experimental data such as ionization potentials or optical spectra. For example,
structural information about small alkali metal clusters (Li,, n < 8) have recently
been carried out, in part from the comparison between ab initio calculations with
post-Hartree—Fock configuration interaction (CI) and optical absorption spectra
[1-4]. However, it is well known that such high level CI or Moller—Plesset
calculations are quite expensive in computational resources, since they scale
(at least) as n®, n being the number of electrons. This precludes the use of such
a method for significantly larger systems.

On the other hand, density functional theory (DFT) has proved to be able to
provide valuable results about structural and energetic properties of molecules,



250 G. Gardet et al.

clusters, or molecules adsorbed on surfaces using a set of Kohn—Sham (KS) orbitals
(for an extensive review of the capabilities of the method, see Ziegler [5]). Recently,
several works [6] have proved that Slater determinants of KS orbitals are
physically meaningful wave functions of the ground state of a system with a given
electron density. Using the extension of the Hohenberg and Kohn theorem [7] to
excited states (see further), the wave functions of some excited states are obtained
similarly, From this starting point, the electric dipole transition moments can be
computed and, finally, the oscillator strengths of the transitions and the theoretical
absorption spectra are estimated.

In this paper, the accuracy and predicting power of DFT to obtain oscillator
strengths and to model absorption spectra are investigated. First the calculations
of the transition energies and the computation of the transition moments are called.
Then, applications to the absorption spectra of some Li, clusters (n < 8) are given.
Li, clusters are good candidates to test DFT because for such systems both recent
theoretical and experimental results are available and, moreover, computing time is
reasonable.

Our structural or energetic results have been carried out using the ADF [8]
or the deMon [9] code, with local or gradient-corrected potentials. The transition
moments proceed from a special routine added to the deMon code.

2 Transition energies
2.1 Multiplet approach

The Hohenberg and Kohn theorem assumes that all the properties of the GS of
a physical system (in particular its energy) can be determinated from its electron
density. The Gunnarson—Lunqvist extension to excited states [10] provides a way
to obtain the excitation energies. This way has been earlier developed by Ziegler
et al. [11] and Von Barth [12] and their calculations afford results in reasonable
agreement with experiments. More recently it has been extended to any irreducible
representation by Daul [13]. Thus it is possible to describe the multiplet splitting at
least to first order. In particular, Daul et al. [14] have recently given some results
for the ruthenocene molecule in excellent agreement with the properties derived
from the optical spectroscopy. This method based on vector coupling gives for any
symmetry point group the relation between the multiplet splitting and the single-
determinant energies of a molecule or cluster, including the case of degenerate
orbitals. The corresponding computer programs have been also developed by
Daul. Following this technique, the multiplet wave function:

¥, =|al'mpSms),

arising from a given configuration «, is obtained by vector coupling as a linear
combination of single determinants:

¥ = Z APy )

u
where I' is the label of the irreducible representation of the space part of the wave
function; m, refers to its component in case of degeneracy; S is the spin part of the
wave function with component mg in case of spin multiplicity larger than 1, &, is
a single Slater determinant and 4;, is a matrix of symmetry coefficients which is
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given by a first program. Then, the second and third programs give the single
determinant energies E(®,) in terms of the r non-redundant single determinants &;:

E@)=Y C,E®)
j=1

and finally the muitiplet energies:
j=r
E(¥) = ) F;E(®). e
i=1

It should be noticed that Eq. (2) gives the energy to first order, since only Coulomb
and exchange integrals (first-order electrostatic interaction) contribute to the
single-determinant @;,

2.2 Fritsche approach

From a totally different point of view, Fritsche [15] developed recently the
generalized DFT, which affords for the solids the energies of any eigenstate of
N interacting electrons from the density of the GS only. Assuming that the
extension to clusters is legitimate, the excitation energy would be given by

AE=Ef—8i+Aﬁ, (3)
with
Ay = — J‘AP?i(’)[Vf;c(f) — 2. (r) dr

and
4p%i(r) = 1¢5(r) > = d:(r)|%,

where ¢ is a KS eigenvalue, the subscripts i and f refer to the two KS orbitals
¢ involved in the one electron transition, the superscript i refers to the ground state,
ei.(r) and Vi (r) are, respectively, the exchange-correlation energy per particle and
the exchange-correlation potential. Note that Eq. (3) is obtained assuming that the
excited state is a single determinant.”

1 On the basis of different hypotheses, Malkin et al. [26] proposed recently a similar, but different, form
for the transition energy, namely:

AE = & — & + Aﬂ,
with

= - [ 220

[Vielr) = ec(r)]dr

and

ps(r) =¢s(r)1%,

pl=Y o]~
i
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2.3 Calculations

To perform our calculations, the geometries of the Li, clusters have been first
optimized at the local density approximation level (LSD) and, for Liy and Li,,
further optimized at the non-local (i.e. gradient-corrected) level of approximation
(in this last case we used the correlation functional of Perdew [16] and the
exchange functional of Becke [17]). The equilibrium geometries are found very
close to those found by post-Hartree—Fock calculations [1-4]. They are labelled
with the symmetry group symbols. The details on the structure calculations will be
published elsewhere [18].

Our results have been obtained within the two approaches in the energy range
from 1 to 4 eV. For the multiplet calculations, we have taken into account all the
configurations corresponding to singlet and triplet LSD states for the even values
of n, and to doublet and quadruplet LSD states for the odd ones.

3 Oscillator strengths
3.1 Method

For an atomic system, assuming an L-S coupling and neglecting the spin—orbit
interaction, the length form of the multiplet oscillator strength fis given by the
expression [19]:

2 E'—_E +L +5 +L’ +8 5
=TT [<PIRIP )%
f 3@S+HEeL+1) MLZ‘_ L Ms;-s ML,;_ 1% Ms;_sl
where |¥) and |¥’') are the normalized initial and final states involved in the
electric dipole transition with the energies E and E’ (resp.),
L and L’ are the angular moments (resp.), S and §’ the spins (resp.),
(28 + 1)(2L + 1) is the degeneracy of the initial state, R is the position operator:

R= Z Ti,
i=1

n being the number of electrons.
A similar expression can be written for molecules or aggregates:

p=i EoE TS SN wriwp
=S e VIRIP'S,
325 + 1)(™rmax mpm0 Mem -5 mp=0 Ms= -5
where |V =|al'm Smg) and |¥') =|o'T'm;.§'mg ) are the initial and final
states, In the present work, | ¥ ) refers to the ground state of the system and | ¥’ to
a one-electron excitation (a doubly or more excited configuration, which is gener-
ally associated with small oscillator strengths describes fine effects and is beyond
the scope of this work).
Following the procedure of Daul, the transition moment

M =<{P|R|¥

can be written as

M=% A,4<P,|R|P,>,
nv
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where (®,|R| @) are matrix elements of the R operator between the two determi-
nants ¢, and @, which are, respectively, connected to the ground state and the
excited state by Eq. (1). Thus, to obtain M it is necessary to compute all the
{®|R|®') (the index of the Slater determinants has been omitted because there is
no more ambiguity) where

@ = (n)"1/? Z_( — 1)IPy(6;,(1)¢;,(2) -.. $;.(n))
and

@ = ()2 Y (= VP, (D1, (2) ... di (),
k

{#:}i=1.nand {¢i };=1,, are the Kohn—Sham spin orbitals, building blocks of ¥ and
¥’ respectively.

In the expression of @ (or ®’), the jth (or kth) term of the sum is simply obtained
by applying the permutation operator P; (or P;) to the KS spin orbitals and
multiplying by — 1 or + 1, according to the parity of the P; (or P,) operator.

Let us recall here that Eq. (3) has been derived by Fritsche assuming that the
excited state y is described by a single determinant X. Following this approach, the
oscillator strength of the transition @ — y is simply given by

fF = % AE!MFlz
where the transition moment is
Mg = (®|R|X)

(@ being a GS determinant) which is mathematically analogous to (®|R| ') and
will be computed similarly.
Introducing the expressions for @ and ¢, {®|R|®’) can be expressed as

COIRI®Y =2 3 (= DB T (= D P (D) o b5()] 3 I 00) ..9i0)
() i=1

It is well known that such an expression can be dramatically simplified [20]:

(P|R|®") = Z (=P () ... g (MIr(D]D1(D) .. u(m)>,  (4)

i=1 r

where P, runs only over the n! permutations in the {¢;};~;,, (and no more in the

{01 }1=1,n)-
Moreover, since r;(i) is a one-electron operator, all the terms of the sum in (4)
break up into a product:

Pl ¢, ()¢, (2) ... ¢, ()| 1) (1 (D) $2(2) ... du(n)D
= (b, (D1 91(1)> - LD (D7D D: (i) -+ {&nu(n)] Paln) . )

It should be noticed that {¢,,(p)|¢,(p)) and <{¢,(q)|r{(q)i¢P;(q)> do not
depend on the p or g index of the electrons, and that in general

;11> # o

The rigorous calculation of M needs the computation of the n! permutations
P, of the {¢;};-1.,» in Eq. (4) and our algorithm takes intc account all these
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permutations, but of course, all these terms are not computed usque ad finem:
in fact, {¢,,|rl¢; > excepted, all the factors of the right-hand side in Eq, (5) are
smaller or equal to unity. Using the Schwartz inequality, it can be shown easily:

[<s100 017 < <;1 8, di>,

where {¢;|¢;> and {¢;|¢;) are equal to unity. (Moreover, although {¢;|¢;) is
not equal to d, its numerical value is in practice, in most cases, very close to zero
or unity, except for a small number of factors.) Thus, as soon as the product of
{.|r|¢i> by the p first factors {(¢,,| ¢,> in Eq. (5) becomes smaller than a given
criterion (typically from 10~ to 10 %), the program stops and the corresponding
term in Eq. (4) is dropped. The numerical stability of M for several criteria with
different orders of magnitude assumes that the dropped terms in Eq. (4) are
negligible (Table 1 shows the example of the 1.73 eV-B, transition in Lig(C,,)).

3.2 Normalized oscillator strengths

As can be seen from the definition, the oscillator strength consists of two important
factors: the transition energy 4E and the transition moment M. Of course, an
inaccurate value of 4E induces an error in the oscillator strength. Then, to permit
an objective estimation of the quality of oscillator strengths with the “multiplet
approach”, the transition energies are taken from our “multiplet” calculations,
except in the case of disagreement with the experimental values. In these last cases,
the energy values derived from the Fritsche method have been used. Obviously, this
is only a way to compare our DFT oscillator strengths with those of the MRD-CI
calculations. Such a “correction” cannot be made a priori without experimental
or other computed data and each spectrum given in the last part of the section
proceeds from only one approach.

It is well known that the oscillator strengths are very sensitive to the quality of
the wave functions of the states involved in the transition [21]. Recently, ab initio
calculations of Bauschlicher et al. [22] showed that basis sets, correlation treat-
ment, geometrical parameters, length or velocity form, can induce important
variations of the oscillator strength, without any change of the total energy
(It should be noticed that in this last paper [22], the length form is shown as the
more stable). More precisely, Fuchs et al. [23], in their work on Nag show that
direct comparison between the oscillator strengths derived from different approx-
imations are not relevant. For example, in their large-scale multiconfigurational

Table 1. Transition moment calculations for 1.73 eV-B,
transition of Li6(C,,)

Criterion Transition moment
10! 1.7

10-2 1.92

10-3 1.971

1074 1.9825

10-% 1.98444

1078 1.984762

1077 1.984R000

107¢ 1.98480052
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linear response calculations, the absolute values of the oscillator strengths depend
strongly on the size of the active space: great variations of the oscillator strength
corresponds to a transition of a given irreducible representation may be counter
balanced by another one in the same energy range, so that the theoretical spectrum
does not show any significant change and is even in satisfactory agreement with the
experimental spectrum. Therefore it is not surprising to obtain DFT absolute
oscillator strengths which are larger than MRD-CI values. This may be related to
factors like basis sets as well as the selected theoretical method, or the equilibrium
geometry. Accordingly in Tables 4-7 we have used “normalized oscillator
strengths”

-
=g

with eventually the global value for a narrow energy range in case of quasi-
degeneracy.

4 Results and discussion
4.1 Transition energies

The excitation energies obtained for the rhombus Lis(D;y), the tripyramid
Lig(C,,), the tetracapped tetrahedron Lig(T,) clusters within the two different
approaches are gathered in Table 2 for the largest intensity transitions (resonance)
with MRD-CI oscillator strengths in the range of 1, and in Table 3 for those with
oscillator strengths in the range of 0.1. For the sake of complete comparison,
the experimental and MRD-CI data have been reported. In this Table 3 have
been added two transition energies for the triangle Lis(C,,) and one value from
a coupled electron pair approximation calculation [24]. To our knowledge, sur-
prisingly, no other ab initio oscillator strengths are available. Therefore, for this
cluster, only a comparison between experimental [25, 1,4] and computed absorp-
tion spectra will be reliable. For the clusters larger than Li, the geometries used
were those optimised at the LSD level whereas the non-local level was retained for
Li; and Li,, as stated previously.

One can see in Tables 2 and 3 that the energetic positions of the multiplets
are in agreement with the experimental or CI values, except for the first intense
transition in Liy (D,) and Lig (Cs,). These transitions involve for Liy (D) [1]
some states for which the description of the electron correlation requires, in the CI
method, at least two determinants of different configurations with coefficients of
the same order of magnitude. The DFT computes several determinants related to
only one configuration and leads in this case to a crude description. For such
a transition a more sophisticated gradient-corrected functional is needed. In the
case of Lig(Cs,), as pointed out by Daul, the discrepancy may be related to the
formula (2}, which is only a first-order expression for the energy. It would be
interesting to compute the off-diagonal terms (second-order electrostatic contri-
butions) to check the effect of this approximation on this transition.

It is worthwhile to note that the Fritsche scheme works well with the transitions
of large intensity. We can see in Table 2 (large intensity transitions) that in all cases
the transition energy computed within the Fritsche scheme looks in reasonable
agreement with the CI values: the rms deviation is about 8%. However, this
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conclusion does not hold for small intensity transitions, as can be seen in Table 3:
rms deviation between the Fritsche and MRD-CI values: 34%, between the
Fritsche and multiplet values: 33%.

4.2 Intensities

The “DFT-multiplets” normalized oscillator strengths for Liy(D,y), Lig(C,,) and
Lig(Cs,) are gathered in Tables 4-6 with those of Ref. [1,2]. Most of them
compare well with the high-level CI calculations. Only the two lowest energy
transitions in Lig(C,,) are in total disagreement: f, = 0.096 and 0.129 in
our calculation compared to 0.037 and 0.017 (this point is still the subject of
further study). These values excepted, the rms deviation is about 16% with
a maximum equal to 29%: 0.012 (this work) and 0.017 (MRD-CI) for a weak
transition in Lig(Cs,). Obviously, the MRD-CI transitions involving mainly
a doubly excited configuration have no equivalent components in this work,
which considers only the one-electron excitations. On the other hand, *DFT-
Fritsche” oscillator strengths are in reasonable agreement with MRD-CI results
only for transitions corresponding to largest MRD-CI oscillator strengths, as
illustrated in Table 7: the rms deviation between Fritsche and MRD-CI is about
20%. More precisely, since no splitting into states is performed with the Fritsche
scheme, only the sum of the DFT transitions lying within a narrow interval has to
be compared to the sum of the corresponding states involved in the MRD-CI
approach.

4.3 Comparison of spectra

The computed absorption spectra in the visible range, obtained by convolution
with a gaussian, are given in Figs. 1-4. For each cluster (Li3(C,,), Lis(Dyy),

Table 7. Comparison of normalized oscillator strengths obtained with Fritsche approach and MRD-CI
values (Ref. [1,2]). This table has been limited to energy ranges corresponding to “MRD-CI summation
oscillator strength” great in the range of 1

Cluster DFT-Fritsche DFT-Fritsche MRD-CI MRD-CI MRD-CI
transition summation of transition summation summation
energy normalized energy of oscillator of normalized
range osciliator range strengths oscillator

strengths strengths

Lis (Dss) 1.9 0.342 1.78 0.7926 0.370

Lis (D3n) 3.3-35 0.319 3.01 0.5698 0.266

Lig (Csy) 2.3-2.6 0.607 2.37-2.62 2.052 0.757

Lig (C3v) 1.9-2.1 0.602 2.15-2.19 1.83 0.592

Lig (C34) 3.2-34 0.273 3.08-3.15 0.6 0.195

Lig (Ta) 2.2-2.5 0.780 2.41-2.63 3.801 0.738
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Lig(Cs,), Lig(Ty4)), they proceed from our most stable geometries, very close
to those of Ref. [1, 3], which have been proved to be the experimental ones. Two
of the spectra have been obtained through the “multiplet” approach, which can
be regarded as the best one (at least the more exact) due to its theoretical
background, the two others within the approach of Fritsche. Analysis of spectra
has been performed making use of the symmetry of transitions for comparison to
CI results. Despite the following remarks, a reasonable agreement with the experi-
mental data is found, as observed in Figs. 1-4:

-~ The Li3(C,,) spectrum (Fig. 1) describes well the experimental one of Ref. [4] but
it should be noticed that the spectrum in Ref. [ 1] exhibits peaks lying at the same
energy with different relative intensities.
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Fig. 2a-¢. Comparison between:
(a) DFT computed spectrum with
“multiplets” approach for the more
stable geometry of Li,. (b) DFT
computed spectrum with Fritsche
approach; (¢} experimental
spectrum from Ref. [3]
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Fig. 3a,b. Comparison between: (a) DFT computed spectrum with “multiplets” approach for the stable
geometry of Lig; (b) experimental spectrum from Ref. [2]

—In Lig(D,p), as already said, some multiplets lie at too low energy (therefore
leading to too small oscillator strengths) and only the peaks near 2.8-2.9 eV are
correctly reproduced (Fig. 2a). The Fritsche approach (Fig. 2b) allows a coarse
assignment of the main experimental transitions, but cannot reproduce the fine
structure, at least because the four main peaks are shifted towards high energies.
—Figure 3 shows the Lis(C,,) spectrum in accord with the experimental one.
However, the oscillator strengths at low energy disagree with the CI values.
Unfortunately, this energy range has not been investigated experimentally in
Ref. [2].

~1In Fig, 4 is drawn the theoretical absorption spectrum of Lig(T,). For this cluster,
the Fritsche approach gives, for a moderate computational effort (with respect to
the multiplet calculation and of course the CI one), a reasonable description of the
broad-band spectrum. In T4 symmetry, a multiplet calculation should improve the
accuracy of the spectrum, but because of the threefold degeneracy of some irreps,
the calculation is more complicated than for cases like C,,, and such a work is still
in progress.
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5 Conclusion

The predictive power of DFT to give structural and spectroscopic assignments and
interpret absorption spectra has been investigated through the example of small
lithium clusters, within two different approaches, one of them bearing on the
determination of the multiplet structure. Kohn—Sham orbitals are used to build
wave functions of the ground state and excited states to compute the oscillator
strengths of electric dipole transitions. It is shown that they are not directly
comparable with MRD-CI results: only relative oscillator strengths can be com-
pared in terms of “normalized oscillator strengths” in a narrow energy band. Then,
DFT values with the multiplet method and in a smaller extent the Fritsche method
are generally in reasonable agreement with MRD-CI results and experimental data.

On the other hand, from the comparison of transition energies given by the two
DFT approaches and MRD-CI or experimental values, the following conclusions
can be drawn:

(i) the multiplet method is capable of reproducing realistic energies and therefore,
associated with oscillator strength calculations, it represents a suitable tool for the
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prediction of absorption spectra. However, in a few cases (Liy(D,;) and Lig(Ca,)),
a transition energy with a large oscillator strength may be found to be unsatis-
factory, leading to a poor description of a part of the spectra. The neglect of
the second-order electrostatic contributions to the multiplet energies or a weakness
in the description of the correlation may explain such features.

(ii) The Fritsche scheme yields correct results only for the largest oscillator
strengths and then leads to only a qualitative description of the absorption spectra.
Nevertheless, energetic results show that formula (3), which has been demonstrated
for solids and ignores the multiplet splitting, can give interesting preliminary
information with a minimum computational effort, for a cluster.

(iii) Finally, this work shows that wave functions constructed from a set of
Kohn-Sham orbitals can be reliable quantities for calculations of electronic
properties, such as oscillator strengths.
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